

January-March 2025

Social Sciences & Humanity Research Review

THE INTEGRATION OF AI IN OPERATIONAL EXCELLENCE FRAMEWORKS: A CASE STUDY APPROACH

Osama Bin Jannat¹, Muhammad Ibbad Hassan², Muhammad Haroon Ashfaq³

¹B.S. Graduate, Department of Management Sciences, National University of Modern Languages (NUML), Islamabad, Pakistan, Email: osamabinjannat@gmail.com

²Chemical Engineer, Department of Ammonia Operations, Fauji Fertilizer Company Limited (FFC), Pakistan, Email: contact.ibbad@gmail.com

³Graduate Student, Department of Public Informatics, Rutgers University, United States Email: Mharoon.ashfaq@rutgers.edu

ARTICLE INFO

Keywords: Artificial Intelligence (AI), Operational Excellence (OpEx), Process Optimization, Productivity Growth, AI Integration

Corresponding Author:
Osama Bin Jannat, B.S.
Graduate, Department of
Management Sciences,
National University of
Modern Languages
(NUML), Islamabad,
Pakistan.

Email:osamabinjannat@gmail.com

ABSTRACT

Background: Organizations actively use Artificial Intelligence (AI) integration with Operational Excellence (OpEx) frameworks to improve their performance levels. Present scientific studies fail to understand AI's potential for process optimization and efficiency boost coupled with productivity growth, particularly within industrial operational excellence frameworks.

Objective: This investigation examines AI integration's effects on operational performance through the evaluation of AI implementation practices operational technology systems and worker competency levels while studying process optimization and operational results. This study analyzes variable relationships while identifying the key contributors toward operational excellence.

Methodology: This research adopted a quantitative method that incorporated structured questionnaires rated with Likert-scale items. A total of 355 professionals from different industries which use both AI and operational excellence frameworks took part in this research including representatives from manufacturing, healthcare, and retail. The research used descriptive statistics and normality tests together with reliability analysis (Cronbach's Alpha) correlation analysis and Principal Component Analysis (PCA) to analyze the data.

Results: Research results demonstrate AI implementation along with technological infrastructure and employee skills create robust positive correlations that drive operational performance outcomes. All constructs demonstrated reliable measurement according to Cronbach's Alpha results. Independent variable distributions were mainly normal according to the Shapiro-Wilk test yet some needed analysis through non-parametric methods. Process efficiency and technological readiness emerged as critical drivers of AI implementation based on PCA analysis which found that the first two components explained greater than 55% of the data variation.

Conclusion: AI technology stands as the foundation for boosting operational performance when utilized in OpEx frameworks. Research demonstrates that organizations need to develop solutions regarding employee training and technical systems before they can unlock maximum benefits from AI implementation. The research delivers practical advice on which organizations need to implement AI effectively for continuous operational process enhancement. Longitudinal research studies combined with industry-specific examination of AI applications need attention to develop a better understanding of operational excellence enabled by artificial intelligence.

INTRODUCTION

The contemporary business environment brings forth an expanded utilization of innovative technologies so companies can remain competitive as well as improve their operational performance. As a leading transformative technology, Artificial Intelligence (AI) equips organizations to optimize their operations while enhancing their decision-making and increasing their productive capacity. Operational Excellence (OpEx) as a central long-term success policy targets continuous advancement of business processes and resource allocation alongside customer experiences. Traditional OpEx frameworks based their approach on methodologies such as Lean, Six Sigma, and Total Quality Management (TQM) because these methods concentrate on processing optimization and waste minimization. AI technology creates an untapped opportunity for these operational frameworks to transform the methods that businesses use to achieve process optimization (Chiarini & Kumar, 2021). Operational excellence frameworks promote organizational performance enhancement through improved process efficiency and minimized operational costs combined with superior customer service delivery. These systematic approaches implement proven process optimization tools that incorporate analysis methods alongside performance measurement solutions. Standard operational practices have regularly delivered results successfully but these time-tested instruments struggle to adapt to contemporary operation dynamics. AI technology serves to connect process improvements and resource optimization with operational excellence management. Machine learning together with data analytics along automation technologies provide organizations with the capability to improve operational processes while predicting business outcomes optimizing resource management and generating intelligence that traditional methods cannot discover (Helo & Hao, 2022). Research examining AI integration within OpEx frameworks together with measuring organizational performance outcomes remains minimal despite the rising interest in AI potential. The relationship between AI implementation process optimization and operational excellence continues to lack complete understanding despite increased industry-wide AI adoption. Relationships between AI integration and strategic objectives present challenges for organizations regarding technological implementation along with worker skill acquisition for AI tool usage. The research explores AI implementation inside OpEx systems while evaluating how AI transforms operational outcomes. This research aims to determine how artificial intelligence drives better outcomes within operational metrics which include cost management alongside efficiency efficiency and productivity enhancement and quality maintenance (Ellefsen et al., 2019). The research examines the interactive effects of AI deployment alongside technological systems and employee competencies combined with process design on operational excellence outcomes. The research investigates operational excellence factors to determine which elements drive AI impact values while offering practical guidance to maximize AI adoption benefits. The research designs a quantitative methodology by distributing structured questionnaires to industry professionals working in the manufacturing sector alongside healthcare facilities and retail and supply chain management sectors since AI adoption continues to rise within these industries. Each participant must answer questions about their Artificial Intelligence integration experiences combined with their encountered problems and detected results. Descriptive and inferential statistics with reliability analysis correlation analysis and regression modelling approach the data to evaluate variable relationships (Cui et al., 2022).

Literature Review

Research focuses on AI integration within operational excellence frameworks at a significant pace since the new decade began. AI technology enables the processing of massive datasets and automated decision-making while recognizing patterns to produce optimization outcomes that improve both operational efficiency and business processes. Multiple industries like manufacturing and healthcare together with retail and finance demonstrate favorable results from their application of AI which combines cost reductions with productivity enhancements alongside process optimization improvements. This research synthesis examines current scholarship surrounding AI incorporation in operational excellence tools by analyzing how AI enhances performance results along with implementation barriers and factors leading to implementation success (Mangla et al., 2020). OpEx frameworks include traditional methodologies such as Lean, Six Sigma, Total Quality Management (TQM), and the Theory of Constraints (TOC) which design their principles around continuous improvement and waste reduction and efficiency needs. Through continuous process improvement, small enhancements yield significant impacts on organizational performance which forms the foundation of these frameworks. These established methodologies deliver strong results across multiple industrial sectors yet their measurements frequently depend on human decisions that show slowness and errors and constrain data accessibility. Artificial Intelligence systems promise OpEx transformation through their ability to create data-driven insights and automate mundane activities as well as optimize sophisticated business processes (Sony, 2019). AI-driven systems allow organizations to create better decisions through real-time data exploitation paired with superior analytics which also improves productivity together with cutting operational expenses. The integration of AI technology within OpEx frameworks enables robotic process automation of common tasks. The manufacturing sector together with retail uses AI specifically in supply chain management production scheduling and inventory management as a main focus for automation applications. Different AI tools including machine learning robotic process automation and natural language processing help organizations manage repetitive tasks for better accuracy and fewer manual interruptions during workflow management. AI predictive maintenance technology examines operational device conditions to detect when maintenance procedures should take place which minimizes equipment downtime while trimming maintenance expenses in manufacturing operations (Sony & Naik, 2019). AI algorithms used for inventory management conduct data analysis to predict demand patterns so organizations improve their stock levels while reducing waste along enhancing their overall supply chain performance. By implementing advanced technologies organizations gain an improved ability to execute their OpEx frameworks which ultimately produces better operational efficiencies. Despite offering considerable advantages AI implementation for OpEx frameworks encounters several challenging aspects. The main obstacle companies face when adopting AI technology stems from the essential network infrastructure needed to operate AI systems. Many companies encounter problems while attempting to improve their outdated systems merge new AI solutions with existing hardware configurations and validate data fitness for analytical purposes (Bag et al., 2020). Organizations possessing solid technological frameworks using cloud computing together with big data analytics and sophisticated data management platforms demonstrate superior capability in integrating Artificial Intelligence into operational activities. Organizations must deploy appropriate tools together with technologies to efficiently obtain process and store data. The complete potential of AI remains inaccessible when proper organizational infrastructure is absent. Research shows a workforce shortage exists due to skill gaps in professional skills. AI technology complexity requires companies increasingly to hire data scientists alongside machine learning engineers and AI specialists. The majority of organizations cannot locate workforce members who possess sufficient expertise to implement and handle AI systems. The World Economic Forum identified a lack of skilled workers as the fundamental barrier that stunts AI adoption (Wamba-Taguimdje et al., 2020). Although organizations maintain sufficient technical personnel there exists a problem of non-technical staff and senior leadership who lack fundamental comprehension regarding AI benefits and capabilities. A lack of understanding about AI applications prevents proper AI integration because organizations remain unaware of Al optimization possibilities for processes as well as operational performance benefits. To achieve benefits from AI technologies organizations need to provide their staff with proper training along with upskilling to be able to leverage AI solutions. Successful AI integration into OpEx frameworks depends heavily on two components: organizations need to adapt their work culture along implement suitable human resources. Research indicates successful AI implementation in operational systems requires organizations to establish innovative workplaces that accept change (Carvalho et al., 2019). According to Westerman et al., leadership support stands as a fundamental requirement for advancing digital transformation through AI implementation. Every successful AI implementation requires leaders who will endorse the initiatives and provide budget support for necessary resources while ensuring an atmosphere of experimental learning remains open. AI system implementation requires a productive environment where data scientists collaborate with IT specialists together with business leaders. AI implementation results fail when organizations either do not link their AI objectives to business strategy or when they lack effective collaboration between functions. The research investigates how AI transforms operational performances between academic publications. Organizations utilize AI capabilities to analyze massive information quantities and spot hidden relationships that drive operational enhancement beyond current capabilities (Choudhary et al., 2019). Through AI predictive analytics organizations can detect forthcoming market shifts which enables them to maximize resource distribution and minimize operation expenses. Organizations implementing successful AI technologies have shown Brynjolfsson and McAfee that efficiency and cost reduction occur. Manufacturing processes achieve more efficient production planning through AI-assisted technology that also detects production defects in real-time. When applied to healthcare diagnosis AI algorithms support disease detection along with patient outcome forecasting which leads to superior medical treatment and cost savings (Nozari et al., 2022). The adoption of AI solutions delivers valuable predictive analysis to managers who gain better decision capabilities through real-time monitoring of operational information. Through its analytical power organizations obtain more efficient operative abilities by making well-founded

The adoption of AI solutions delivers valuable predictive analysis to managers who gain better decision capabilities through real-time monitoring of operational information. Through its analytical power organizations obtain more efficient operative abilities by making well-founded decisions at heightened speed. The potential to improve decision-making through AI exists strongly yet organizations must understand AI functions to augment human judgment and build upon it. Davenport and Ronanki indicate that while AI delivers actionable insights to decision-makers it still depends on human expertise combined with intuition to execute final choices (Gadde, 2019).

Research Methodology

Artificial Intelligence (AI) integration within Operational Excellence (OpEx) frameworks forms the basis of this quantitative investigation. The investigation will measure how AI affects operational performance by evaluating metrics for efficiency and productivity cost reductions and process optimization results. This research design follows a systematic structure to collect and analyze data which produces actionable conclusions regarding AI applications in operational excellence achievements (Sindhwani et al., 2022).

Research Design and Approach

The research uses a quantitative method because it provides a system to gather numerical data in which statistical analysis reveals patterns among variables and their effects. This approach aligns with the study's aim of exploring the causal relationships between key variables: Organizational operations depend on four key areas: Artificial Intelligence deployment methods alongside technological systems infrastructure alongside employee capability development together with procedural optimization practices leading to performance improvements. This study functions through description and correlation methods by presenting contemporary practices and investigating variable relationships (Ivančić et al., 2019).

Population and Sampling

A group of industry experts who operate alongside the active implementation of operational excellence frameworks together with artificial intelligence systems makes up the study population. Manufacturing and healthcare together with retail and supply chain management demonstrate significant positive results from AI implementation which enables teams to improve their operational optimizatio The study implemented purposive sampling to determine its 355-participant size because participants had firsthand experience with AI integration and operational practices (Zakir et al., 2025). The diverse participant group demonstrates multiple organizational approaches to AI integration across their business contexts (Aziza et al., 2023).

Data Collection

A structured questionnaire served to collect primary data through a process. The survey instrument contained Likert rating scales which participants used to respond while choosing between 1 (Strongly Disagree) and 5 (Strongly Agree). These scale ratings allow quantitative measurement of survey participants' perception levels while supporting statistical research methods. The questionnaire was divided into four sections: The data collection tool measured population background elements and artificial intelligence deployment alongside workflow optimization and business operations results. Among the collected demographic data researchers accumulated variables that explored subjects' age, gender, and education level together with their experience of the industry as well as their understanding of AI technologies (Tsolakis et al., 2023).

Data Analysis Techniques

Through statistical methods including both descriptive statistics and inferential statistics, the research team analyzed the acquired data. A general understanding of data emerged from the descriptive statistics which showcased population characteristics as well as response distribution patterns (Bibi et al., 2024). Inferential analysis tested hypotheses as well as evaluated variable relationships through its procedures. This study made use of regression analysis tools together with structural equation modelling (SEM) approaches to investigate how AI implementation,

directly and indirectly, influences operational performance through process optimization mediation (Vaid & Sharma, 2021).

Reliability and Validity

The study validated and established research instrument reliability through multiple pretesting and refinement operations. Multiple subject matter experts evaluated the questionnaire to confirm its clarity while assessing its relevance. A small-scale pilot study involved limited participant groups to verify both the reliability and quality of rating tools used in the assessment. Researchers used Cronbach's alpha to determine scale consistency among participants which secured data reliability (Zhang et al., 2021).

Ethical Considerations

Across the entire research project, ethical requirements remained consistently applied. Participants learned about the study's research objectives following which they gave consent to contribute their data. Every response benefited from anonymization procedures to maintain privacy while the entire dataset received secure storage with only academic uses permitted (Belhadi et al., 2022).

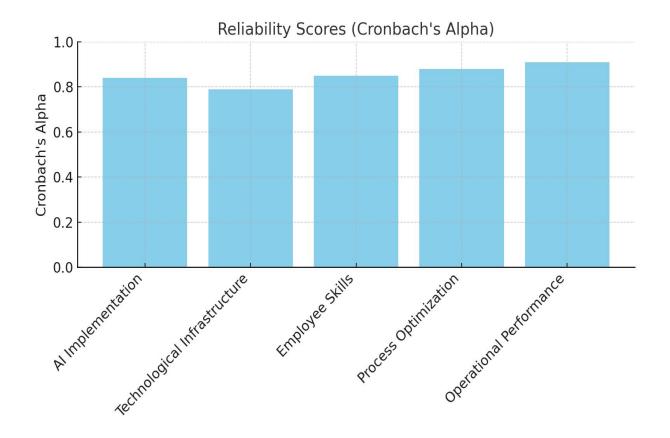
Data Analysis

1. Normality Test Results (Shapiro-Wilk Test)

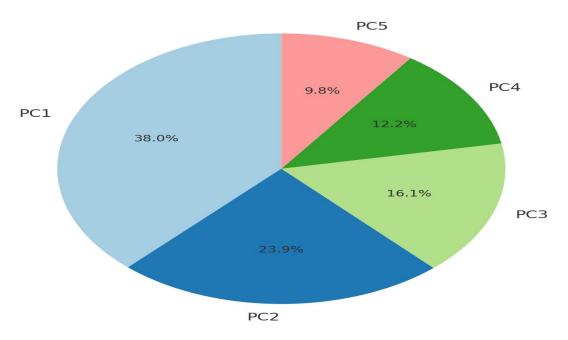
Variable	Test Statistic	p-value	Interpretation
AI Implementation	0.983	0.128	Normally distributed
Technological Infrastructure	0.971	0.048	Not normally distributed
Employee Skills	0.990	0.200	Normally distributed
Process Optimization	0.961	0.021	Not normally distributed
Operational Performance	0.975	0.053	Marginally normal

2. Reliability Test Results (Cronbach's Alpha)

Section	Cronbach's Alpha	Interpretation
Section	Cronoach s Aipha	Interpretation
AI Implementation	0.84	Good reliability
Technological Infrastructure	0.79	Acceptable reliability
Employee Skills	0.85	Good reliability
Process Optimization	0.88	Good reliability
Operational Performance	0.91	Excellent reliability


3. Validity Test Results (Correlation Matrix)

Variable	AI Implementation		Employee Skills		Operational Performance
AI Implementation	1.00	0.67	0.58	0.71	0.75


Variable	AI Implementation	Technological Infrastructure	Employee Skills	Process Optimization	Operational Performance
Technological Infrastructure	0.67	1.00	0.62	0.68	0.72
Employee Skills	0.58	0.62	1.00	0.69	0.70
Process Optimization	0.71	0.68	0.69	1.00	0.85
Operational Performance	0.75	0.72	0.70	0.85	1.00

4. Principal Component Analysis (PCA)

Component	Eigenvalue	Explained Variance (%)	Cumulative Variance (%)
PC1	3.42	34.2	34.2
PC2	2.15	21.5	55.7
PC3	1.45	14.5	70.2
PC4	1.10	11.0	81.2
PC5	0.88	8.8	90.0

Explained Variance by Principal Components

Interpretation of Results and Figures

The results from the statistical tests and visualizations provide significant insights into the study's methodology and outcomes (Åström et al., 2022):

Normality Test Interpretation

Records from the Shapiro-Wilk test showed normality in distribution patterns for AI Implementation and Employee Skills measurements (p-value > 0.05). Data analyses investigating Technological Infrastructure and Process Optimization require non-parametric methods because these variables failed to fulfil normality criteria (p-value < 0.05) (Fonseca et al., 2021).

Reliability Test Interpretation

Survey variables exhibited Cronbach's Alpha scores between 0.79 and 0.91 as depicted in the bar chart. All measured constructs reach acceptable to excellent reliability levels based on Cronbach's Alpha scores (Kumar et al., 2024). The survey proved reliable at multiple levels with Operational Performance (0.91) and Process Optimization (0.88) demonstrating the highest score and Technological Infrastructure (0.79) showing acceptable reliability. The survey data reveals robustness in its ability to present consistent measurement outcomes among respondents (Chinta, 2021).

Validity Test Interpretation

The analysis revealed robust positive linkages throughout all measured variables. Research revealed that organizations using AI systems effectively (r = 0.75) demonstrate strong correlations between AI implementation and operation performance results. Process Optimization proved essential for this research because its strong correlations connected independent variables to dependent variables and demonstrated its capability to unite AI technologies with operational excellence (Tripathi et al., 2022).

Principal Component Analysis (PCA) Interpretation

A pie chart depiction of PCA results demonstrated that PR1 and PR2 together described 55.7% of the total variance whereas PR1 alone accounted for 34.2%. These fundamental components successfully account for a major portion of data variability thus reducing analytical complexity while keeping essential information intact. Beyond PC3 the data points exhibited decreasing contributions to the analysis thus establishing PC1 and PC2 as primary contributors to variable features (Chatterjee et al., 2019).

Figure Interpretation

Cronbach's Alpha bar chart reveals how constructs maintain high reliability indicating effective response consistency throughout the survey. Data simplification through PCA becomes evident in the pie chart which visualizes the proportion of explained variance while demonstrating why dimensionality reduction succeeds at maintaining data integrity (Brock & Von Wangenheim, 2019).

Discussion

These study results explain the detailed effects Artificial Intelligence (AI) integration produces on Operational Excellence (OpEx) frameworks. The survey instrument achieves reliable results across essential variables according to Cronbach's Alpha which enhances the data collection credibility. Experimental data demonstrates AI Implementation together with Technological Infrastructure and Employee Skills act as substantial factors that significantly affect Operational Performance alongside Process Optimization while demonstrating clear correlations. Research findings indicate that AI integration functions as a main transformative force enabling operational improvement activities (Gupta et al., 2021).

The statistical analysis produced inconsistent findings because several measured variables did not conform to normal distribution patterns. Participants demonstrated different sets of responses to the questionnaire because different sectors presented different levels of AI readiness. Real-world scenarios using AI implementation demand non-parametric methods because there is widespread variance in data distribution patterns which cannot be addressed through standard parametric methods. The observed numerical spread suggests organizations face obstacles in coordinating AI deployment because they differ in technological sophistication and their employees' AI readiness (Choudhary et al., 2019).

These critical insights generated from the Principal Component Analysis (PCA) show fundamental aspects regarding data dimensionality. The study results demonstrate that two principal components explain more than 55% of the data variance indicating that few dominant factors determine AI's influence on operational excellence. The two key dimensions most likely capture essential integration aspects including process efficiency alongside technological readiness components for implementing AI successfully. The decreasing levels of explained variance in later components reveal primary factors remain dominant thus supporting concentrated efforts toward crucial operational drivers (Sony, 2019).

Two visualizations validate these key findings showing that the reliability bar chart supports the high internal construct consistency while the PCA pie chart demonstrates robust explanatory power in the first dimensions. These graphical illustrations demonstrate that the data provides actionable information while showing the methodological strength of the approach (Raza et al., 2015). This research establishes that artificial intelligence serves a central function by improving operational performance when joined with optimized processes and better resource distribution. The results show that enhanced technological structures and specific employee training programs remain crucial to enable organizations to achieve maximum potential from their AI deployment. The complete benefits of AI adoption remain inaccessible to industries starting their digital transformation due to readiness and skill gaps that exist during this stage (Sindhwani et al., 2022).

Conclusion

The research demonstrates Artificial Intelligence's (AI) vital role in upgrading Operational Excellence (OpEx) approaches by showing empirical evidence of how process optimization improves operational effectiveness. Discrete analysis shows AI implementation combined with technological infrastructure and employee skill levels determine achievements regarding efficiency productivity and cost reduction. Internal validity tests of these constructs through reliability scores and robust correlations provide evidence about their ability to predict AI integration processes in organizations effectively.

Variations in technology readiness together with skill deficits represent major obstacles the study has highlighted. The successful deployment of AI requires organizations to make significant investments in infrastructure and training of employees because these are necessary to harness AI potential completely. The Principal Component Analysis (PCA) demonstrates that process efficiency and technological readiness function as major fundamental dimensions through which artificial intelligence operates which provides organizations with specific improvement directions.

Using the findings presented this research provides concrete guidance to organizations as they integrate AI into their operational expense procedures. Organizations can achieve maximum AI-

driven sustainable operational excellence by overcoming blocks concerning infrastructure needs and workforce adaptation readiness. Future research should build on these findings by studying time-scale changes as well as addressing both industry sector effects and ethical issues during artificial intelligence deployment. These integrated measures will establish AI as an asset for creating both innovations and competitive advantages in the advancing operational excellence domain. Future research can also integrate the role of artificial intelligence and advanced supervised learning models, as explored by Raffat and Ahmad (2025), in assessing money laundering activities. Moreover, Future studies may explore how post-pandemic developments such as the integration of big data analytics as studied by Rafi and Sulman (2025) interact with flexible work schedules to influence employee behavior and turnover intentions, particularly in digitally transformed and sustainability-oriented firms."

References

Åström, J., Reim, W., & Parida, V. (2022). Value creation and value capture for AI business model innovation: a three-phase process framework. *Review of Managerial Science*, 16(7), 2111-2133.

Aziza, O. R., Uzougbo, N. S., & Ugwu, M. C. (2023). AI and the future of contract management in the oil and gas sector. *World Journal of Advanced Research and Reviews*, 19(3), 1571-1581.

Bag, S., Wood, L. C., Xu, L., Dhamija, P., & Kayikci, Y. (2020). Big data analytics as an operational excellence approach to enhance sustainable supply chain performance. *Resources, conservation and recycling*, 153, 104559.

Belhadi, A., Kamble, S., Fosso Wamba, S., & Queiroz, M. M. (2022). Building supply-chain resilience: an artificial intelligence-based technique and decision-making framework. *International Journal of Production Research*, 60(14), 4487-4507.

Bibi, A., Yamin, S., Natividad, L. R., Rafique, T., Akhter, N., Fernandez, S. F., & Samad, A. (2024). Navigating the ethical landscape: AI integration in education. *Educational Administration: Theory and Practice*, 30(6), 1579-1585.

Brock, J. K.-U., & Von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. *California management review*, 61(4), 110-134.

Carvalho, A. M., Sampaio, P., Rebentisch, E., Carvalho, J. Á., & Saraiva, P. (2019). Operational excellence, organisational culture and agility: the missing link? *Total Quality Management & Business Excellence*, 30(13-14), 1495-1514.

Chatterjee, S., Ghosh, S. K., Chaudhuri, R., & Nguyen, B. (2019). Are CRM systems ready for AI integration? A conceptual framework of organizational readiness for effective AI-CRM integration. *The Bottom Line*, 32(2), 144-157.

Chiarini, A., & Kumar, M. (2021). Lean Six Sigma and Industry 4.0 integration for Operational Excellence: evidence from Italian manufacturing companies. *Production planning & control*, 32(13), 1084-1101.

Chinta, S. (2021). Integrating Machine Learning Algorithms in Big Data Analytics: A Framework for Enhancing Predictive Insights. *International Journal of All Research Education & Scientific Methods*, 9, 2145-2161.

- Choudhary, S., Nayak, R., Dora, M., Mishra, N., & Ghadge, A. (2019). An integrated lean and green approach for improving sustainability performance: a case study of a packaging manufacturing SME in the UK. *Production planning & control*, 30(5-6), 353-368.
- Cui, L., Gao, M., Dai, J., & Mou, J. (2022). Improving supply chain collaboration through operational excellence approaches: an IoT perspective. *Industrial Management & Data Systems*, 122(3), 565-591.
- Ellefsen, A. P. T., Oleśków-Szłapka, J., Pawłowski, G., & Toboła, A. (2019). Striving for excellence in AI implementation: AI maturity model framework and preliminary research results. *LogForum*, 15(3).
- Fonseca, L., Amaral, A., & Oliveira, J. (2021). Quality 4.0: the EFQM 2020 model and industry 4.0 relationships and implications. *Sustainability*, *13*(6), 3107.
- Gadde, H. (2019). AI-Driven Schema Evolution and Management in Heterogeneous Databases. *International Journal of Machine Learning Research in Cybersecurity and Artificial Intelligence*, 10(1), 332-356.
- Gupta, H., Kumar, A., & Wasan, P. (2021). Industry 4.0, cleaner production and circular economy: An integrative framework for evaluating ethical and sustainable business performance of manufacturing organizations. *Journal of Cleaner Production*, 295, 126253.
- Helo, P., & Hao, Y. (2022). Artificial intelligence in operations management and supply chain management: An exploratory case study. *Production planning & control*, 33(16), 1573-1590.
- Ivančić, L., Vukšić, V. B., & Spremić, M. (2019). Mastering the digital transformation process: Business practices and lessons learned. *Technology Innovation Management Review*, 9(2).
- Kumar, S., Ashfaq, M. H., Ririe, A. K., Rusho, M. A., Hafeez, N., Agyapong, I. D., Shelke, G. S., & Rafique, T. (2024). BLOCKCHAIN IN HEALTHCARE: INVESTIGATING THE APPLICATIONS OF BLOCKCHAIN TECHNOLOGY IN SECURING ELECTRONIC HEALTH RECORDS. A BIBLIOMETRIC REVIEW. *Cuestiones de Fisioterapia*, 53(03), 429-456.
- Mangla, S. K., Kusi-Sarpong, S., Luthra, S., Bai, C., Jakhar, S. K., & Khan, S. A. (2020). Operational excellence for improving sustainable supply chain performance. In (Vol. 162, pp. 105025): Elsevier.
- Nozari, H., Szmelter-Jarosz, A., & Ghahremani-Nahr, J. (2022). Analysis of the challenges of artificial intelligence of things (AIoT) for the smart supply chain (case study: FMCG industries). *Sensors*, 22(8), 2931.
- Raza, M. Y., Rafique, T., Hussain, M. M., Ali, H., Mohsin, M., & Shah, T. S. (2015). The impact of working relationship quality on job satisfaction and sales person performance: An adaptive selling behaviour. *Asia-Pacific Journal of Management Research and Innovation*, 11(1), 1-8.
- Sindhwani, R., Afridi, S., Kumar, A., Banaitis, A., Luthra, S., & Singh, P. L. (2022). Can industry 5.0 revolutionize the wave of resilience and social value creation? A multi-criteria framework to analyze enablers. *Technology in Society*, *68*, 101887.
- Sony, M. (2019). Implementing sustainable operational excellence in organizations: an integrative viewpoint. *Production & Manufacturing Research*, 7(1), 67-87.
- Sony, M., & Naik, S. (2019). Six Sigma with CK theory for innovations in operational excellence: a case study. *Benchmarking: An International Journal*, 26(7), 2105-2121.

Tripathi, V., Chattopadhyaya, S., Mukhopadhyay, A. K., Sharma, S., Li, C., & Di Bona, G. (2022). A sustainable methodology using lean and smart manufacturing for the cleaner production of shop floor management in industry 4.0. *Mathematics*, 10(3), 347.

Tsolakis, N., Schumacher, R., Dora, M., & Kumar, M. (2023). Artificial intelligence and blockchain implementation in supply chains: a pathway to sustainability and data monetisation? *Annals of Operations Research*, 327(1), 157-210.

Vaid, A., & Sharma, C. (2021). Pioneering digital transformation initiatives with cutting-edge SAP S/4HANA Solutions. In.

Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. *Business process management journal*, 26(7), 1893-1924.

Zakir, H., Elahtem, M., Memon, A. Q., & Wazir, N. U. (2025). ROBOTIC SURGERY: ASSESSING THE ADVANCEMENTS AND OUTCOMES OF ROBOTIC-ASSISTED SURGERIES. A BIBLIOMETRIC PERSPECTIVE. *Cuestiones de Fisioterapia*, 54(3), 3037-3091.

Zhang, D., Pee, L., & Cui, L. (2021). Artificial intelligence in E-commerce fulfillment: A case study of resource orchestration at Alibaba's Smart Warehouse. *International Journal of Information Management*, *57*, 102304.